Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density
نویسندگان
چکیده
The nutrient-sensing target of rapamycin (TOR) pathway appears to have a conserved role in regulating life span. This signaling network is complex, with many downstream physiological outputs, and thus the mechanisms underlying its age-related effects have not been elucidated fully. We demonstrated previously that reduced TOR signaling (intor1Delta strains) extends yeast chronological life span (CLS) by increasing mitochondrial oxygen consumption, in part, by up-regulating translation of mtDNA-encoded oxidative phosphorylation (OXPHOS) subunits. Here, we have examined in greater detail how TOR signaling influences mitochondrial function and CLS and the role of the Sch9p kinase in the TOR-mitochondria pathway. As is the case for oxygen consumption, mitochondrial translation is elevated in tor1Delta strains only during active growth and early stationary phase growth points. This is accompanied by a corresponding increase in the abundance of both mtDNA-encoded and nucleus-encoded OXPHOS subunits per mitochondrial mass. However, this increased OXPHOS complex density is not associated with more mitochondria/cell or cellular ATP and leads to an overall decrease in membrane potential, suggesting that TOR signaling may influence respiration uncoupling. Finally, we document that the Sch9p kinase is a key downstream effector of OXPHOS, ROS and CLS in the TOR-mitochondria pathway. Altogether, our results demonstrate that TOR signaling has a global role in regulating mitochondrial proteome dynamics and function that is important for its role in aging and provide compelling evidence for involvement of a "mitochondrial pre-conditioning" effect in CLS determination.
منابع مشابه
Extension of chronological life span in yeast by decreased TOR pathway signaling.
Chronological life span (CLS) in Saccharomyces cerevisiae, defined as the time cells in a stationary phase culture remain viable, has been proposed as a model for the aging of post-mitotic tissues in mammals. We developed a high-throughput assay to determine CLS for approximately 4800 single-gene deletion strains of yeast, and identified long-lived strains carrying mutations in the conserved TO...
متن کاملReduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells
The target of rapamycin (TOR) is an important signaling pathway on a hierarchical network of interacting pathways regulating central biological processes, such as cell growth, stress response and aging. Several lines of evidence suggest a functional link between TOR signaling and sphingolipid metabolism. Here, we report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the yeast...
متن کاملRepression of Mitochondrial Translation, Respiration and a Metabolic Cycle-Regulated Gene, SLF1, by the Yeast Pumilio-Family Protein Puf3p
Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and...
متن کاملLife Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9
Calorie restriction (CR), the only non-genetic intervention known to slow aging and extend life span in organisms ranging from yeast to mice, has been linked to the down-regulation of Tor, Akt, and Ras signaling. In this study, we demonstrate that the serine/threonine kinase Rim15 is required for yeast chronological life span extension caused by deficiencies in Ras2, Tor1, and Sch9, and by calo...
متن کاملTor1/Sch9-Regulated Carbon Source Substitution Is as Effective as Calorie Restriction in Life Span Extension
The effect of calorie restriction (CR) on life span extension, demonstrated in organisms ranging from yeast to mice, may involve the down-regulation of pathways, including Tor, Akt, and Ras. Here, we present data suggesting that yeast Tor1 and Sch9 (a homolog of the mammalian kinases Akt and S6K) is a central component of a network that controls a common set of genes implicated in a metabolic s...
متن کامل